发布时间:2023/10/11 14:12:17
在上篇文章中,我们初步了解了PCB接地设计的基础知识,为我们进行接地设计打下了良好的基础。在本文中,我们就详细了解下PCB接地设计的一些技巧和方法,以免我们在实际实践中“踩雷”。
PCB 布局上不应有任何未连接的东西。如果你的板上有一个开放空间,得用铜和过孔填充它以连接接地层,这将为 PCB 的所有信号创建一个结构化的路径,以有效地到达地面。
使用接地层是许多 PCB 设计人员最常用的技术。接地层通常由铜制成,覆盖 PCB 上没有组件或走线的所有区域。如何确定接地层,则取决于电路板的层数。例如,如果电路板有两层,则可将底层作为接地层,将走线和组件放在顶层。
放置接地层时,应确保它不会形成导电材料环。该环增加了接地层对电磁干扰 (EMI) 的敏感性。当外部磁场与导电环接触时,它会充当电感,产生被称为接地回路的电流。接地回路会干扰产生电噪声的其他电路。
当在整个底层的下方放置一个接地层并移除所有包含电气元件的部件时,可能会形成一个导电环。应确保走线尽可能短,并在其下方放置接地层以防止出现振铃。此外,可以通过调整走线和组件的布局来避免创建导电环。
每个组件都必须单独连接到一个实心接地层以避免接地回路。
由连接到接地层的两条迹线形成的接地回路
使用机箱接地时,你可以通过在连接到机箱的接地部分放置一个空隙来避免接地回路,如下所示。电容的使用提供了一个交流接地点。对于需要使用墙壁电源并需要直接返回地面的电气设备来说,这是一种理想的情况。
消除接地回路天线
元件应布置在靠近地的信号层上,以使返回路径短且走线耦合到地。如果 PCB 包含模拟和数字组件,则必须非常小心地放置接地连接。电路板的模拟部分和数字部分应该在物理上分开,但它们仍然需要连接到电源返回路径。
混合信号接地连接
有些人可能会建议将数字地和模拟地完全分开,然后使用铁氧体磁珠将它们连接起来,但这可能会产生比它所解决的更多的 EMI 和噪声问题,尤其是当在非常高的频率下工作时。
连接这些部分的一个好方法是将电源返回路径放置在两个平面之间,这样任何一个部分的返回电流都不会进入另一个平面。重要的是要注意,不应在两个接地层之间的间隙上布线任何走线,因为这会产生很长的电流返回路径,极易受到 EMI 的影响。接地层之间的空间可用于放置 ADC 等混合信号组件。
如果 PCB 的两侧都有接地层,它们将通过板上许多不同位置的过孔连接。这些通孔是穿过电路板并将两侧相互连接的孔,允许从任何可以插入通孔的地方访问接地层。
使用过孔可以帮助你避免接地环路。它们将组件直接连接到接地点,接地点通过低阻抗连接到电路的所有其他接地点,同时还有助于缩短返回循环的长度。
接地平面通常在流入它的电流频率的特定波长处谐振。你应该在接地层周围以精确的间隔放置过孔,以避免接地层谐振。帐篷通孔是 PCB 板的一个重要方面,因为它们通过通孔将热量吸收到板的另一侧,从而有助于冷却热运行的组件。
在 PCB 板布局没有过孔的情况下,可以使用小型钻孔机钻几个孔,然后将铜穿过孔并焊接,从而实现两侧的连接。
去耦是在集成电路芯片旁边实施LC 网络提供瞬态开关电流的过程。为集成电路芯片安装电源引脚将它们连接到外部电源。此外,还包含将它们连接到 PCB 接地层的接地引脚。
应该在电源引脚和组平面之间 放置去耦电容,以消除由芯片中提供的电压产生的振荡。
去耦电容对于改善和增强 PCB 的功能至关重要。电容设计用于存储电荷,因此 PCB 中的去耦电容充当电荷存储设备。
因此,如果 IC 需要更多电荷,则去耦电容通过低电感路径向 IC 提供电荷。除了增强 PCB 功能外,去耦电容还可以有效降低多层平面上电源产生的噪声。此外,去耦电容还降低了 EMI。
在连接器中,所有信号线必须并行运行。因此,你必须使用接地引脚分离连接器。
每块电路板可能需要多个连接器引脚连接到地。只有一个引脚可能会导致阻抗不匹配问题,从而导致振荡。如果两个连接导体的阻抗不匹配,它们之间流动的电流可能会来回反弹,这些振荡会改变系统的性能并导致其无法按预期工作。
连接器的每个引脚的接触电阻很低,但可能会随着时间的推移而上升。因此,最好使用多个接地引脚。PCB 连接器中大约 30% 到 40%的引脚应该是接地引脚。
连接器有不同的间距,并且可以有不同数量的引脚排,连接器的引脚也可以平行于 PCB 表面或与其成直角。
无论是单层 PCB 还是多层 PCB ,都需要一个点来将所有接地点连接在一起。这可能是机箱上的金属框架或 PCB 上的专用接地层,你通常会听到将这个公共接地点称为星形接地。
确保尽量减少接地路径上的串联过孔,而是将组件接地直接发送到专用接地层。
添加到电路板的通孔越多,必须处理的阻抗就越大,这对于可以将阻抗路径变成电压差的快速瞬态电流尤其重要。
在进行任何布线之前,请务必先正确设计地面,这是整个路由过程的基础。
许多设计人员只考虑他们的信号传输到哪里,但每个信号都有一条返回路径通过地面。信号的发送和返回路径将具有相同的电流,这会影响电源稳定性和接地反弹。
你可以使用基尔霍夫电流定律来了解电流将如何通过你的电路。
在多层 PCB线路板中,堆栈中电源、信号和接地层的排列对信号完整性有重大影响,并将影响布线策略。
将接地层保持在信号层附近以最小化电流的返回路径非常重要。在 4 层板中,电源层和接地层通常位于内层,而信号走线和元件位于外两层。
在多层 PCB 的板之间发送接地连接时,始终计划动态变化。在处理需要长距离电缆的应用时尤其如此。
对于这些情况,你可以使用低压差分信号、光隔离器和共模扼流圈来控制变化。
电路板的模拟部分需要分开,这包括模数转换器和数模转换器。
在设计 PCB 的“平面图”时,务必将这些区域隔离开来。ADC 的接地可以连接到一个公共接地点,数字信号可以通过该接地点传递到 PCB 的其他部分。
注意混合信号的平面规划
根据经验,“接地回路”一词可以指系统受到接地电位差异影响的任何情况。一个典型的例子是,当两个模块通过一根长电缆连接时,电缆中的返回电流导致一个模块的接地电压明显高于另一个模块的接地电压。不过,这里专门指的是接地回路。例如:
如果你必须使用单独的 PCB 走线进行大量接地连接,则创建如上图所示的环路其实很容易。
接地平面的存在并不意味着不可能创建接地回路,因为 CAD 程序不会阻止你在接地点之间绘制轨迹。但是,如果你始终使用过孔或通孔进行接地连接,那么问题应该会在很大程度上消失:通过将过孔放到平面上,你可以直接从组件连接到接地点,该接地点通过低阻抗连接到所有其他接地电路中的点。
在 PCB 布局中正确放置组件很重要。可以在组件正下方进行分割接地层的连接,以避免接地回路。
在具有多个子系统的 PCB 布局中,可以仔细布置混合信号组件,以便在组件下方连接板分区以避免接地环路。
以上就是关于 PCB接地设计技巧。希望大家多多关注UG商城的“设计师之家”栏目或UG商城微信公众号。平时在工作中主动学习,善于总结,这样才能不断提高自己的线路板设计水平。